
SA367 Mathematical Models for Decision Making Spring 2018 Uhan

Lesson 5. _eMileage Running Problem

_e problem

Professor May B. Wright needs to �y from Baltimore (BWI) to Los Angeles (LAX) to attend a conference. She thinks
this would be the perfect opportunity to accumulate some frequent �yer miles on American Airlines (AA), where she
already has Platinum status.

Looking into �ights on AA, she sees that every itinerary from BWI to LAX costs roughly the same. She has a full day
to spare for travel, so she wants to know: which sequence of AA domestic �ights starting at BWI and ending at LAX
over the course of one day will allow her to accumulate the most miles?

● Yes, people actually do this. _is is known as mileage running.

○ Apparently, this has become harder to do in recent years.

○ A recent article from the New York Times.

○ An older article from Wired.

Modeling the problem

● Suppose we have a database of every AA domestic �ight on a given day.

● In particular, for each �ight, we have:

○ the �ight number

○ the origin airport

○ the destination airport

○ the departure time at the origin airport

○ the arrival time at the destination airport

○ the distance traveled in miles

● How can we formulate Professor Wright’s problem as a shortest path problem?

pandas (the package, not the animals)

● In the same folder as this notebook, there is a ûle called aa_domestic_flights.csv with the database described
above.

● .csv stands for comma-separated values.

● We can view .csv ûles in Excel - let’s see what’s in this ûle. Cut to Excel...

● How can we use this data in Python? With pandas.

● pandas is a Python package for data analysis.

○ It’s especially useful for cleaning and manipulating datasets.

● pandas does a lot of stuò — here is the oõcial documentation for pandas.

1

https://www.nytimes.com/2014/09/14/upshot/the-fadeout-of-the-mileage-run.html
https://www.wired.com/2007/07/mileage-runner/
http://pandas.pydata.org/pandas-docs/stable/index.html

● In this lesson, we’ll use pandas in a very basic way to set up the shortest path problem we formulated above.

● To install pandas, open a WinPython Command Prompt and type

pip install pandas

● pip might tell you that pandas is already installed. If not, it should go ahead and install it for you.

● To use pandas, we ûrst need to import it, like this:

In [2]: import pandas as pd

● A pandasDataFrame is just a two-dimensional table, with rows and columns.

● We can use the read_csv() function in pandas to read aa_domestic_flights.csv into a DataFrame called df,
like this:

In [3]: # Read csv file into a DataFrame
Designate departure and arrival time columns as dates
df = pd.read_csv('aa_domestic_flights.csv', parse_dates=['DEP_TIME', 'ARR_TIME'])

● By default, read_csv() assumes the ûrst row of the csv ûle contains the names of each column.

● _e parse_dates argument tells read_csv() which columns correspond to dates, so that we can perform
date-speciûc calculations on these columns later.

● Here is the oõcial documentation for read_csv().

● It’s a good idea to take a quick look at the DataFrame read_csv() creates, just in case something went wrong.

● To examine the ûrst 5 rows of a DataFrame, we can use the .head() method:

In [4]: # Print the first 5 rows of df
df.head()

Out[4]: FLIGHT ORIGIN DEST DEP_TIME ARR_TIME DISTANCE
0 1-BOS-JFK BOS JFK 2016-09-01 06:00:00 2016-09-01 07:15:00 187.0
1 40-BOS-ORD BOS ORD 2016-09-01 19:12:00 2016-09-01 22:02:00 867.0
2 147-BOS-LAX BOS LAX 2016-09-01 15:15:00 2016-09-01 21:45:00 2611.0
3 197-BOS-ORD BOS ORD 2016-09-01 15:30:00 2016-09-01 18:24:00 867.0
4 198-BOS-JFK BOS JFK 2016-09-01 13:10:00 2016-09-01 14:31:00 187.0

● _e ûrst column is the index of the DataFrame. _e index provides a label for each row of the DataFrame.

● Right now, the index is sort of uninformative.

● Since each row corresponds to a �ight, it would be nice if the index corresponded to the �ight names.

● We can do this using the .set_index() method:

2

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

In [5]: # Set the index to the flight names
df = df.set_index("FLIGHT")

Print the first 5 rows of df
df.head()

Out[5]: ORIGIN DEST DEP_TIME ARR_TIME DISTANCE
FLIGHT
1-BOS-JFK BOS JFK 2016-09-01 06:00:00 2016-09-01 07:15:00 187.0
40-BOS-ORD BOS ORD 2016-09-01 19:12:00 2016-09-01 22:02:00 867.0
147-BOS-LAX BOS LAX 2016-09-01 15:15:00 2016-09-01 21:45:00 2611.0
197-BOS-ORD BOS ORD 2016-09-01 15:30:00 2016-09-01 18:24:00 867.0
198-BOS-JFK BOS JFK 2016-09-01 13:10:00 2016-09-01 14:31:00 187.0

● A column by itself is called a Series.

● You can select the Series DEST of the DataFrame df like this:

df["DEST"]

● So, to print the Series DEST, we could write:

In [6]: # Print the DEST column
print(df["DEST"])

FLIGHT
1-BOS-JFK JFK
40-BOS-ORD ORD
147-BOS-LAX LAX
197-BOS-ORD ORD
198-BOS-JFK JFK
85-BOS-JFK JFK
252-BOS-ORD ORD
333-BOS-LAX LAX
1086-BOS-MIA MIA
1094-BOS-DFW DFW
307-BOS-PHX PHX
1155-BOS-ORD ORD
1172-BOS-MIA MIA
1211-BOS-DFW DFW
1274-BOS-MIA MIA
166-BOS-LAX LAX
175-BOS-DFW DFW
1435-BOS-ORD ORD
1404-BOS-ORD ORD
1503-BOS-ORD ORD
1509-BOS-MIA MIA
1240-BOS-ORD ORD
223-BOS-LAX LAX
1006-BOS-MIA MIA
1039-BOS-JFK JFK
2303-BOS-DFW DFW
2251-BOS-DFW DFW
2253-BOS-ORD ORD
2378-BOS-PHX PHX
2454-BOS-MIA MIA

...

3

1919-PVD-PHL PHL
1961-PVD-CLT CLT
2035-PVD-CLT CLT
840-PVD-CLT CLT
1653-PVD-CLT CLT
1770-BUF-CLT CLT
1789-BUF-CLT CLT
1987-BUF-CLT CLT
858-BUF-CLT CLT
1793-SYR-CLT CLT
2065-SYR-CLT CLT
1797-MDT-CLT CLT
1807-CHS-CLT CLT
2063-CHS-CLT CLT
1814-ALB-CLT CLT
1895-ALB-CLT CLT
2006-ALB-CLT CLT
1832-PWM-CLT CLT
1859-PWM-CLT CLT
1861-GSO-CLT CLT
1867-ROC-CLT CLT
1868-ROC-CLT CLT
2084-BOI-PHX PHX
514-BOI-PHX PHX
592-BOI-PHX PHX
621-BOI-DFW DFW
2357-LBB-DFW DFW
2571-ANC-DFW DFW
483-GEG-PHX PHX
490-GEG-PHX PHX
Name: DEST, Length: 2607, dtype: object

● You might want to click on the le� of the output above — this will collapse the output so it doesn’t take over
your browser window.

Making the data easier to use

● We have successfully imported our data into Python!

● We could set up our shortest path problem using the DataFrame directly, but this would be a bit cumbersome.

● Let’s take some additional steps that will make setting up our shortest path problem a bit easier.

● First, let’s get a list of the �ights. _is will be useful, since the nodes in our shortest path problem correspond to
the �ights.

● In the DataFrame df we deûned above, the index consists of the �ights.

● We can get a list of the index values of df with list(df.index.values).

In [7]: # List of flights
flights = list(df.index.values)

● Let’s check our work and inspect flights:

4

In [8]: # Print flights
Leaving this out - output is very, very long
print("Flights: {0}".format(flights))

● While we’re here, let’s make sure we have the right number of �ights in the variable flights:

In [9]: print("Number of flights: {0}".format(len(flights)))

Number of flights: 2607

● We also want to easily access the origin, destination, departure time, arrival time, and distance for each �ight.

● _ese correspond to the columns in our DataFrame df.

● We can convert DataFrame columns to dictionaries as using the .to_dict() on the column of interest, like this:

In [10]: # Convert columns to dictionaries
origin = df['ORIGIN'].to_dict()
destination = df['DEST'].to_dict()
departure_time = df['DEP_TIME'].to_dict()
arrival_time = df['ARR_TIME'].to_dict()
distance = df['DISTANCE'].to_dict()

● As a result, we can access information about each �ight through these dictionaries as follows:

In [11]: # Information about flight 1240-BOS-ORD
print("Origin: {0}".format(origin['1240-BOS-ORD']))
print("Destination: {0}".format(destination['1240-BOS-ORD']))
print("Departure time: {0}".format(departure_time['1240-BOS-ORD']))
print("Arrival time: {0}".format(arrival_time['1240-BOS-ORD']))
print("Distance: {0}".format(distance['1240-BOS-ORD']))

Origin: BOS
Destination: ORD
Departure time: 2016-09-01 12:15:00
Arrival time: 2016-09-01 15:05:00
Distance: 867.0

Setting up the shortest path problem in networkx

● Now we’re ready to set up the shortest path problem we formulated above.

● First, let’s import networkx and bellmanford so we can use them:

In [12]: import networkx as nx
import bellmanford as bf

Adding nodes

● Let’s build the shortest path graph, starting with an empty directed graph:

5

In [13]: # Create empty NetworkX digraph
G = nx.DiGraph()

● Next, let’s create a "start" and "end" node.

In [14]: # Create start and end nodes
G.add_node("start")
G.add_node("end")

● Now, we need to add a node for each �ight, or each row of our database.

In [15]: # Add a node for each flight
for flight in flights:

G.add_node(flight)

● _e .number_of_nodes() method applied to a networkx graph — well, you can guess what it does. Or, you can
just try it out:

In [16]: # Print number of nodes in G
print(G.number_of_nodes())

2609

Adding edges

● Now we can go over every pair of �ight nodes, and check if we need to add an edge between them.

○ Remember the length of these edges is the negative of the distance of the ûrst �ight.

● To add or subtract times, we need to use pd.to_timedelta()— here is the documentation.

○ For example, to subtract 30 minutes, we would write

some_time_variable - pd.to_timedelta(30, unit="m")

● _is might seem awkward, but if you think about it, working with dates and time is awkward — you need to
keep track of diòerent (non-base-10) units.

In [17]: # Iterate through every pair of flight nodes
for first in flights:

for second in flights:

If the first flight arrives where the second flight departs...
if (destination[first] == origin[second]):

And if the first flight arrives 45 minutes before the second flight
leaves,

add an edge from the first flight to the second
if (arrival_time[first] + pd.to_timedelta(45, unit="m") <

departure_time[second]):
G.add_edge(first, second, length=-distance[first])

6

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.to_timedelta.html

● Finally, we need to add edges:

○ from the start node to all �ights departing from BWI, and

○ from all �ights arriving at LAX to the end node.

In [18]: # Iterate through all flights
for flight in flights:

If the flight departs from BWI,
add an edge from start to this flight
if origin[flight] == "BWI":

G.add_edge("start", flight, length=0)

If the flight arrives at LAX,
add an edge from this flight to end
if destination[flight] == "LAX":

G.add_edge(flight, "end", length=-distance[flight])

● Similar to G.number_of_nodes(), we can perform a sanity check with our work with G.number_of_edges().

In [19]: # Print the number of edges in G
print(G.number_of_edges())

158335

Solving the shortest path problem, interpreting the output

● Now that we have our directed graph set up, we can solve for the shortest path from the start node to the end
node just like we did in the last lesson:

In [20]: # Solve the shortest path problem using Bellman-Ford
length, nodes, negative_cycle = bf.bellman_ford(G, source="start", target="end",
weight="length")

Print output from Bellman-Ford
print("Negative cycle? {0}".format(negative_cycle))
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Negative cycle? False
Shortest path length: -8005.0
Shortest path: ['start', '1817-BWI-CLT', '658-CLT-LAS', '1584-LAS-PHX', '694-PHX-HNL',
'298-HNL-LAX', 'end']

● What does the output tell us about how to solve Professor Wright’s problem?

● _e length of the shortest path is the negative of the maximum total distance Professor Wright can travel from
BWI to LAX. In this case, the maximum total distance is 8005 miles.

7

● _e nodes in the shortest path tells us which �ights Professor Wright should take:

○ 1817 from BWI to CLT
○ 658 from CLT to LAS
○ 1584 from LAS to PHX
○ 694 from PHX to HNL
○ 298 from HNL to LAX

On your own...

Suppose Professor Wright wants to ûnd the longest itinerary from IAD (Washington DC - Dulles) to SAN (San Diego)
instead.

In the cell below, write the code that sets up and solves the shortest path formulation for her problem from start to
ûnish.

In the cell a�er, describe in words what the output from the Bellman-Ford algorithm tells you about how to solve
Professor Wright’s problem.

In [21]: # Import packages
import pandas as pd
import networkx as nx
import bellmanford as bf

Read csv file into a DataFrame
Designate departure and arrival time columns as dates
df = pd.read_csv('aa_domestic_flights.csv', parse_dates=['DEP_TIME', 'ARR_TIME'])

Create empty networkx digraph
G = nx.DiGraph()

Create start and end nodes
G.add_node("start")
G.add_node("end")

Add a node for each flight
for flight in flights:

G.add_node(flight)

Iterate through every pair of flight nodes
for first in flights:

for second in flights:

If the first flight arrives where the second flight departs...
if (destination[first] == origin[second]):

And if the first flight arrives 45 minutes before the second flight
leaves,

add an edge from the first flight to the second
if (arrival_time[first] + pd.to_timedelta(45, unit="m") <

departure_time[second]):
G.add_edge(first, second, length=-distance[first])

Iterate through all flights
for flight in flights:

If the flight departs from IAD,
add an edge from start to this flight
if origin[flight] == "IAD":

8

G.add_edge("start", flight, length=0)

If the flight arrives at SAN,
add an edge from this flight to end
if destination[flight] == "SAN":

G.add_edge(flight, "end", length=-distance[flight])

Solve the shortest path problem using Bellman-Ford
length, nodes, negative_cycle = bf.bellman_ford(G, source="start", target="end",
weight="length")

Print output from Bellman-Ford
print("Negative cycle? {0}".format(negative_cycle))
print("Shortest path length: {0}".format(length))
print("Shortest path: {0}".format(nodes))

Negative cycle? False
Shortest path length: -6005.0
Shortest path: ['start', '2636-IAD-LAX', '2503-LAX-ORD', '2375-ORD-DFW', '435-DFW-SAN',
'end']

● _e length of the shortest path is the negative of the maximum total distance Professor Wright can travel from
BWI to LAX. In this case, the maximum total distance is 6005 miles.

● _e nodes in the shortest path tells us which �ights Professor Wright should take:

○ 2636 from IAD to LAX

○ 2503 from LAX to ORD

○ 2375 from ORD to DFW

○ 435 from DFW to SAN

9

	The problem
	Modeling the problem
	pandas (the package, not the animals)
	Making the data easier to use
	Setting up the shortest path problem in networkx
	Adding nodes
	Adding edges

	Solving the shortest path problem, interpreting the output
	On your own...

